Eigenanatomy: Sparse dimensionality reduction for multi-modal medical image analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenanatomy: sparse dimensionality reduction for multi-modal medical image analysis.

Rigorous statistical analysis of multimodal imaging datasets is challenging. Mass-univariate methods for extracting correlations between image voxels and outcome measurements are not ideal for multimodal datasets, as they do not account for interactions between the different modalities. The extremely high dimensionality of medical images necessitates dimensionality reduction, such as principal ...

متن کامل

Multi-modal Medical Image Retrieval

Images are ubiquitous in biomedicine and the image viewers play a central role in many aspects of modern health care. Tremendous amounts of medical image data are captured and recorded in digital format during the daily clinical practice, medical research, and education (in 2009, over 117,000 images per day in the Geneva radiology department alone). Facing such an unprecedented volume of image ...

متن کامل

Dimensionality Reduction for Image Retrieval

Dimensionality reduction methods are of interest in applications such as content based image and video retrieval. In large multimedia databases, it may not be practical to search through the entire database in order to retrieve the nearest neighbors of a query. Good data structures for similarity search and indexing are needed, and the existing data structures do not scale well for the high dim...

متن کامل

Semi-Supervised Dimensionality Reduction of Hyperspectral Image Based on Sparse Multi-Manifold Learning

In this paper, we proposed a new semi-supervised multi-manifold learning method, called semisupervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploits both the labeled and unlabeled data to adaptively find neighbors of each sample from the same manifold by using an optimization program based on sparse representation, and naturall...

متن کامل

Dimensionality Reduction for Sparse and Structured Matrices

Dimensionality reduction has become a critical tool for quickly solving massive matrix problems. Especially in modern data analysis and machine learning applications, an overabundance of data features or examples can make it impossible to apply standard algorithms efficiently. To address this issue, it is often possible to distill data to a much smaller set of informative features or examples, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Methods

سال: 2015

ISSN: 1046-2023

DOI: 10.1016/j.ymeth.2014.10.016